The 1-D Heat Equation 18.303 Linear Partial Differential Equations

نویسنده

  • Matthew J. Hancock
چکیده

Rate of heat transfer ∂u = (1) −K0 area ∂x where K0 is the thermal conductivity, units [K0] = MLT U . In other words, heat is transferred from areas of high temp to low temp. 3. Conservation of energy. Consider a uniform rod of length l with non-uniform temperature lying on the x-axis from x = 0 to x = l. By uniform rod, we mean the density ρ, specific heat c, thermal conductivity K0, cross-sectional area A are ALL constant. Assume the sides

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation

‎In this paper Lie point symmetries‎, ‎Hamiltonian equations and conservation‎ ‎laws of general three-dimensional anisotropic non-linear sourceless heat transfer‎ ‎equation are investigated‎. ‎First of all Lie symmetries are obtained by using the general method‎ based on invariance condition of a system of differential equations under a pro‎longed vector field‎. ‎Then the structure of symmetry ...

متن کامل

The heat and wave equations in 2D and 3D 18.303 Linear Partial Differential Equations

We desire the heat flux through the boundary S of the subregion V , which is the normal component of the heat flux vector φ, φ n̂, where n̂ is the outward unit · normal at the boundary S. Hats on vectors denote a unit vector, n̂ = 1 (length 1). | | If the heat flux vector φ is directed inward, then φ n̂ < 0 and the outward flow of · heat is negative. To compute the total heat energy flowing across ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006